Resumo: Elevações na atividade urinária de GGT, bem como a proteinúria, são consideradas metodologias adequadas para averiguação da morfofuncionalidade renal, pois o alto peso molecular das enzimas, e outras proteínas, impede a sua filtração a partir do sangue pelo glomérulo normal (Hinchcliff et al., 1988; Meyer et al., 2005).

Portanto, não existe correlação entre o aumento da atividade sérica da GGT e o aumento da atividade de GGT na urina, que neste caso, é originada da borda em escova do epitélio tubular renal proximal (Hinchcliff et al., 1988; Meyer et al., 2005).

Assim como a proteinúria que configura-se como uma das primeiras alterações a surgir quando o paciente inicia uma lesão renal.

Entretanto, para o correto e precoce diagnóstico de lesões renais, é necessário estabelecer parâmetros de normalidade em animais hígidos, das espécies em questão, ainda não disponíveis na literatura, e posteriormente, detectar alterações na atividade enzimática urinária de animais com suspeita de nefropatias tubulares.

Introdução/Justificativa: Os exames complementares como a bioquímica sérica, hematologia e urinálise fornecem importantes informações para avaliação do estado clínico do animal, monitoramento durante o tratamento, quando este é indicado, e prognóstico da evolução da doença.

Dentre os exames complementares, a gama glutamiltransferase (GGT) é uma enzima que tem sido destacada em inúmeros estudos. A GGT urinária apresenta concentração máxima nas células epiteliais dos túbulos contorcidos proximais e alça de Henle dos néfrons. Geralmente, quando ocorrem aumentos duas a três vezes superior ao valor basal indica lesão no epitélio tubular, sendo por isso considerada um marcador precoce de dano tubular renal em cães (UECHI et al., 1994; GRAUER & LANE, 1997; CLEMO, 1998). Entretanto, esses mesmos parâmetros não foram ainda determinados em equídeos hígidos e ainda não se conhece como ou se estes se alteram quando ocorrem afecções renais em animais dessas espécies.

Esse projeto auxiliará discentes da graduação em Medicina Veterinária e pósgraduandos a melhor compreender o estado funcional dos rins de equídeos a partir das análises laboratoriais propostas.

Objetivos:

Geral:

Estabelecer a atividade enzimática da Gama Glutamiltranferase Urinária (GGTu) e determinar a UPC (relação proteína/creatinina) em equídeos hígidos.

Específicos:

Determinar a relação entre a atividade enzimática da GGT e creatinina urinária em equídeos hígidos;

Verificar a influência da densidade urinária na atividade enzimática de GGT e UPC em equídeos hígidos;

Correlacionar o perfil sérico e urinário de GGT, bem como, de outros parâmetros relacionados à morfofuncionalidade renal em equídeos hígidos.

Metodologia:

ANIMAIS E LOCAL DE ANÁLISES

Para este estudo, serão utilizados 30 equídeos hígidos (10 equinos, 10 asininos e 10 muares) alocados ou atendidos no setor de grandes animais do Hospital Veterinário Jerônimo Dix-Huit Rosado Maia, da Universidade Federal Rural do Semi-Árido (UFERSA), sob os cuidados dos médicos veterinários residentes e técnico, ou de proprietários particulares da região.

O material coletado será analisado no laboratório de Patologia Clínica situado no Hospital Veterinário e no Laboratório Didático de Patologia Clínica e Farmacologia Geral da UFERSA.

EXAME FÍSICO

Os animais serão avaliados em local apropriado, utilizando brete de contenção. Serão analisados os valores de frequência cardíaca (FC) e frequência respiratória (FR) com auxílio de estetoscópio, grau de desidratação por meio da avaliação da exsicose, tempo de preenchimento capilar (TPC) por pressão na mucosa oral (gengiva) e temperatura retal (TR) utilizando termômetro clínico digital.

COLETA DE SANGUE E URINA

Os animais serão submetidos à venopunção jugular para obtenção de 10 ml de sangue, que serão subdivididos em dois frascos, sendo: 5 ml no frasco contendo ácido

etilenodiaminotetracético (EDTA) para exame hematológico e obtenção de plasma e, 5 ml em frasco sem anticoagulante para obtenção de soro.

Serão coletados 10 ml de urina sendo este volume acondicionado em frascos estéreis apropriados. Os frascos serão identificados e encaminhados ao laboratório.

ANÁLISE LABORATORIAL

As amostras de sangue obtidas em tubos com anticoagulante, serão homogeneizadas em equipamento apropriado antes realização das análises hematológicas.

As amostras obtidas em tubos sem anticoagulantes serão submetidas à centrifugação durante 10 minutos a 3000 rpm. Ao término da centrifugação, o soro será removido e com auxílio de uma pipeta, aliquotados em microtubos para posterior análise bioquímica. Em soro serão mensurados os parâmetros bioquímicos: ureia, creatinina, AST, GGT e proteinograma.

No sangue total, além das análises hematológicas que incluem eritrograma, leucograma, plaquetograma, será determinado o teor de fibrinogênio. Serão realizadas contagens manuais, incluindo contagem global de hemácias, leucócitos e plaquetas, determinação do hematócrito e concentração de hemoglobina por espectrofotometria.

A glicose sérica será mensurada por meio de aparelho glicosímetro portátil. A partir dos valores obtidos para hemácias, hematócrito e hemoglobina, serão calculados os índices hematimétricos volume corpuscular médio (VCM) e concentração de hemoglobina corpuscular média (CHCM).

As contagens diferenciais de leucócitos serão realizadas em esfregaços sanguíneos corados com panótico rápido, enumerando-se 100 células e estabelecendo-se as fórmulas leucocitárias relativa e absoluta.

As análises bioquímicas serão realizadas em aparelho semiautomatizado utilizando kits comerciais específicos para determinação dos valores de ureia, creatinina, AST, GGT e proteinograma.

A urinálise será composta por avaliação física (cor, aspecto, turbidez, pH, densidade), química por meio de tiras reagentes e sedimentoscopia. A bioquímica urinária determinará a relação proteína/creatinina (UPC) e atividade enzimática de GGT (diluição de 1:25) através de kits comerciais específicos. Para apresentação dos valores finais de GGT urinária serão procedidos cálculos para correção em função da densidade urinária.

ANÁLISE ESTATÍSTICA

Para análise estatística, será utilizado o teste comparação de médias, pelo método de Tukey. Permitindo comparar resultados de tratamento dos animais entre si. Se ocorrer distribuição não-paramétrica dos dados. Os mesmos serão analisados pelo Teste de Kruskaal-Wallis. A significância adotada será p<0,05.

Referências:

BAYLY, W. M., BROBST, D. F., ELFERS, R. S., & REED, S. M. (1986). Serum and urinary biochemistry and enzyme changes in ponies with acute renal failure. The Cornell veterinarian, 76(3), 306-316.

CLEMO, F. A. Urinary enzyme evaluation of nephrotoxicity in the dog. Toxicologic Pathology, Philadelphia, v. 26, n. 1, p. 29-32, 1998.

FUENTES, V. O., GONZALEZ, H., SANCHEZ, V., FUENTES, P., & ROSILES, R. (1997). The effect of neomycin on the kidney function of the horse. Journal of Veterinary Medicine Series A, 44(1-10), 201-205.

GRAUER, G. F.; LANE, I. F. Insuficiência renal aguda. In: ETTINGER, S. J.. Tratado de medicina interna veterinária: moléstias do cão e do gato / Stephen J. Ettinger; tradução Sônia de Aguir Gomes do Nascimento, Fernando Gomes do Nascimento. - São Paulo: Manole, 1992.2557p: il.

HINCHCLIFF, K. W.; MCGUIRK, S. M.; MACWILLIAMS, P. S. Gentamicin nephrotoxicity. In: Proceedings of the annual convention of the American Association of Equine Practitioners (USA). 33: 67–75. 1988.

MEYER, C.; GUTHRIE, A. J.; STEVENS, K. B. Clinical and clinicopathological changes in 6 healthy ponies following intramuscular administration of multiple doses of imidocarb dipropionate. Journal of the South African Veterinary Association, v. 76, n. 1, p. 26-32, 2005.

UECHI, M.; TERUI, H.; NAKAYAMA, T.; ISHIKAWA, R.; WAKAO, Y.; TAKAHASHI, M. Evaluation of urinary enzymes in dogs with early renal disorder.

The Journal of Veterinary Medical Science, Tokyo, v. 56, n. 3, p. 555-556, 1994. Disponível em:< https://www.ncbi.nlm.nih.gov/pubmed/7948390> Acesso em: 10 maio. 2019